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ABSTRACT 

It is shown  to be consis tent  with M a r t i n ' s  Ax iom and  2 ~0 > R1 t ha t  

every two Pc-points  in f in  "- l~I have the  s a m e  topological type.  

1. Introduction 

Two points, p and q, in f in  \ N will be said to be t opo log ica l ly  equ iva l en t  or, to 

have the same topo log i ca l  t y p e  if and only if there is an autohomeomorphism 

• : / ~ N \ N ~  f i N ' - N  

such that  ~(p) = q. It was shown by W. Rudin in [2] that,  assuming CH, 

every two P-points are topologically equivalent. In [1] van Mill asked whether 

the same result can be obtained for Pc-points by assuming MA instead of CH. 

That  the answer to this question is negative follows from the fact that it is 

consistent with MA that every autohomeomorphism of f in  \ N is induced by 

an almost permutation of w [4]. Since MA implies that there are the maximum 

number of Pc-points while there are are only 2 ~° ahnost permutations, topological 

equivalence classes all have size 2 a° and so there are many Pc-points which are 

not topologically equivalent. 
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This raises the question of whether or not MA itself implies that there are two 

P~-points in f in  \ N which are not topologically equivalent. It is the purpose of 

this paper to show that the answer is negative thereby providing the complete 

solution to van Mill's question. In particular, it will be shown that there is an 

equivalence relation on f in  \ N which, under MA, has only one equivalence class 

of Pc-points, and that it is consistent with MA that any two Pc-points which 

are equivalent with respect to this relation are topologically equivalent. The 

restriction to P~-points is of course important since MA and 2 ~° > R1 implies 

that there are both Pw2-points and P,,t-points which are not P~,2-points and these 

are distinct topological properties. 

The notation and terminology of this paper will adhere as much as possible 

to accepted standards but some of the main points are listed here. The relation 

a C_* b means that la \ b I < R0. A P~-filter is a filter on w, p, such that for every 

.4 E [p]<~ there is B E p such that B C_* A for every A E .A and, moreover, ~ is 

the greatest cardinal with this property. A P~-point is an ultrafilter which is a 

P~-filter. If p is a filter then p* will denote the dual ideal to p. 

2. A n  e q u i v a l e n c e  r e l a t i o n  on  P~-points 

In this section a relation on ultrafilters will be defined and particular attention 

will be paid to this relation on PC-points. This relation will be used in obtaining 

the main result of this paper; whether or not it is interesting in its own right is 

left to the reader to decide. To begin, a preliminary piece of notation is required. 

Definition 2.1: For any partial one-to-one function h : w --, w define 

E(h) = {n E w;(Vi E n)({h(i),h-l(i)} C_ n)}. 

For any infinite A _C 0~ and B C • define ~A,B to be the unique order preserving 

bijection from A to B and define ~(A, B) = P.(~A,B). I 

The set ~(h)  can be thought of as the set of points where h reflects. Notice 

that not all functions reflect - -  for example, the function h(n) = n + 1 does not 

- -  and so it is possible that ~(h) = 0. It is also easy to see that ~(A, B)  = 

{n ~ w; I A n n l = I B n n l }. In proving Lemma 4.1 the following variant of the 

Galvin-McKenzie game will be used. 

Det~nition 2.2: The game G(p, q, r) is defined for each triple of filters p, q and 

r on w. Play alternates between Players I and II. Player I chooses A,, E p, 
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B.  E q and C.  6 r while Player II chooses a,, E [A.] <~°, b,, E [B,,] <~¢° and 

c.  E C.  subject to the condition that max(a. U b.) < c. < min(a.+l U b,,+l). 

Player II is declared to be the winner if U{a.; n E w} E p, U{b.; n E w} E q and 

{c.;n E w} E r. The game G(p,q) is defined similarly for each pair of filters 

p and q by omitting any mention of r. To be precise, Player I chooses A. E p 

and B.  E q while Player II chooses a .  E [A,,] <~° and b,, E [B,,] <to°. Player II is 

declared to be the winner if U{a,,; n E w} E p and U{b.; n E w} E q. l 

The following lemma is a straightforward generalisation of an unpublished re- 

sult of Galvin and McKenzie, but a proof is included for the reader's convenience. 

LEMMA 2.1: If  p and q are P-points then Player I has no winning strategy in 

the game G(p, q). 

Proof." Suppose that Player I does have a winning strategy. Since the strategy 

is necessarily a countable object it is possible to choose A E p and B E q such 

that if the pair of sets X and Y is ever chosen by Player I in any game by this 

strategy then A C* X and B C_* Y. 

Now construct a sequence of integers {Ni; i E w} such that A \ X C Ni+l and 

B \ Y C_ Ni+x for any of the finitely ma~ly plays of the game G(p, q) in which 

Player II has chosen only non-empty sets contained in Ni and Player I's strategy 

advises to choose the pair X E p rind Y E q. Choose i E 3 such that 

U{N3.+i+I \ N3,,+i; n E w} 6 p 

and then choose i' E 3 such that O{N3.+i,+l \N3n+i,;n E on} E q. Let j E 

3 \{ i ,  i'}. It now follows that if the game G(p, q) is played, with Player I following 

the supposed winning strategy and Player II playing (N3k+j+3 \ N3k+j+l) N A 

and (N3t+j+3 \ N3k+j+l) n B at stage k of the game, then each of these moves 

is legal and Player II wins. I 

Dd]nition 2.3: Define p Mr q if and only if p and q are ultrafilters and r is a 

filter on w and 

1. for every X E p there is Y E q such that E(X, Y) E r, 

2. for every X E q there is Y E p such that E(X, Y) E r, 

3. Player I does not have a winning strategy in the game G(p, q, 7"). 
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The relation t~ will be defined to be the transitive closure of U{t~;  r E fin \ N}. 

II 

It is easy to see that ~ is symmetric and it is transitive by definition. It is also 

reflexive because p t~r p holds for any two ultrafilters p and r since ~(A, A) = w 

for any A _C w. Hence ~ is an equivalence relation. The first point worth noting 

is that Martin's Axiom implies that all Pcpoints  are t~-equivalent. This will be 

used to show that all Pc-points are topologically equivalent. 

LEMMA 2.2: MA implies that i f  p and q are Pc-points then there are P~-f~lters 

r, r ~ and a P~-point t such that p t ~  t and t ~ ,  q. In particular, p ~ q. 

Proof." Let {Ae; ~ E ¢} be a C*-descending base for p and {Be; ~ E c} be a 

___*-descending base for q. Also, let {We; ~ E ¢} be an enumeration of [w] ~ and let 

{Se; ( E e} enumerate, cofinally often, all possible strategies for Player I in any 

game G(p ~, q~, r ~) - -  that this is possible follows from the fact that each strategy 

is a countably branching tree, because the branching is determined by Player II's 

moves which are simply finite sets of integers. It suffices to construct descending 

towers {C~; ~ E ¢}, {D~; ~ E ¢} mad {E~; ~ E e} such that, letting c~,, d~ and e,~ 

refer to the filters generated by the first t~ sets from {C~; ( E c}, {De; ~ E ¢} and 

{Ee; ~ E ¢} respectively, the following conditions hold: 

• there is A--¢ E p such that A--¢ C A~ and E(A~, E~) D Ce, 

• there is B e E q such that B e C_ B e and ~(Be ,Ee)  D_ D~, 

• E eC_*W c o r E  c A W  e = * 0 ,  

• if S e is a strategy for Player I in the game G(p, ee,c~) then it is not a 

winning strategy in the game G(p, ee+l, Q+1 ), 

• if S e is a strategy for Player I in the game G(q, ee,de) then it is not a 

winning strategy in the game G(q, e~+l, d~+l ), 

because the filters generated by {Ce;~ E c} and {D~;~ E c} are Pc-filters and 

r t dc and t = ec satisfy tile conclusion of the lemma. The fact 

that p t~r t follows from the first condition and the fact (easily proved) that if 

~(A~, Ee) D C e then there is some E '  D E~ such that Z(Ae, E ' )  D Ce. A similar 

argument applies to show that t t~r, q. 
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To see that the construction can be completed, suppose that descending towers 

{C~; ~ E ~}, {D~; ~ E a} and {E~; ~ E a} have been constructed satisfying the 

required hypothesis. First consider the case that ~ = j3 + 1. 

Two tasks must be accomplished: A winning play against the strategy S# 

must be found for Player II and it must be decided whether or not the set W# 

will belong to the filter ea+l. Assume that W 0 n E 0 is infinite since otherwise 

E 0 C_* to \ W 0. From the strategy S 0 it is possible to construct an associ- 

ated strategy S} in the game G(p, q). To do this, let S~ denote the strategy 

S 0 when considered as a strategy in the game G(p,e~,,c,~) and let S~ denote 

the strategy S 0 when considered as a strategy in the game G(q, eo,,d~,) - -  if 

it happens that the strategy S 0 does not make sense in either of these games 

(that is, it mentions sets other than those from p, c,~ mad e~, or from q, d,~ and 

e~) then let S~ or S~ be an arbitrary strategy in the appropriate game. Sup- 

pose that a sequence { ( (A i ,B i ) , (a i , b i ) ) ; i  E k} has been played in the game 

G(p,q) - -  in other words, Player I has chosen {(A i, Bi); i E k} while Player II 

has chosen {(ai, hi); i E k} - -  and that Player I has also chosen auxiliary sets 
i i i i , i  i i i t t . "  {(C ,D  ,Ev,Eq,/c  ,d ,ep,eq,ai ,bi) ,z  E k -  1} such that: 

• C i E c  a, Ed O , E ~ E e O m a d E i p E e  O, 
¢ 

• c i < d i < c i+ l ,  

• C i+x C C i, O i+'  C O i, E~ +1 C E;  alad E~ +1 _C E~, 

• c i E C O and d i E D O, 

• C i+lCIc i = - ~ a n d D  i+l N d  i = ~ ,  

• IConc'l=~o, ID0nD~l=~o and IWonEonE~nE: l=e,o,  

• E~+, n max(e~ ne~) = 0 and E~ +' n max(~, n ~ )  = 0, 

• Cti U a it Q_ A i n(H -. H-') and bi tO b~ C_ B ~ n ( d  ~ \ d~- ' ) ,  

! C A i n A O and b~ c B i N Bo, • a i -- 

c (c ~ ,, c i-~) n Eo n w o n  E~p, • eq_i C (d i \ d i-1 ) n E o n wan E: and % 

" epi n ( c i \ d i - 1 )  = eqi n ( c i \ d i - 1 ) ,  

• i O ( d  i \ ci), • ~ + 1  n (d i -- c i) = ~q 



262 J. STEPRANS Isr. J. Math. 

• l e~, n (c' "- c i - ' )  I = I (ai  u ,,~) n A~ n (c' "- c ' - ' ) l ,  

• Ic~ n (d ~ ".. d~-~)I  = I(b~ u b~) n B~ n (d ~ -- d~-~) I .  

Suppose also that Player I has also chosen C k-1 , D k - i  , Epk-1 , Eqk-1 and a~_ I and 

that Player II has just chosen (ak-1, b~-I ). The strategy S~ will tell Player I ]low 

t o c h o o s e ( A k , B k ) , i f ,  k r~k Ek  ~ k  d ~ a n d ,  k-1 -k-1 k-1 k-1 ~.~'/ " ~  ' p 'a"~q '  k) (C ,a  ,ep ,eq , b~)basedon  

the sets played by Player I and Player II so far as well as the auxiliary sets chosen 

by Player I. In particular, Player I should choose (Ak, Bk), (Ck, Dk, Ep,k Eq,k ak ) t  

and " k - 1  r k - 1  k - 1  ~ k - 1  1.1 \ (c , a  , %  ,~q , % )  as follows: 

• Player I defines c k-1 to be the least element of 

C~ n c k-~ "-(max(ak_~ U .~._~) U d k-2) 

such that 

I :  -~ n E~ n Ep k-~ n E~ -~ n w~ - ,  dk-~ [ > lak_~ u a~_, I; 

• Player I then chooses e~_ 1 C_ E~ n E~ -~ n E~ -~ n Wa u (c k-~ \ d k-2) such 

that 

I~i,-, I + I~ -2 "ck-~l= I(a~-~ uak_,)nA, I 
_k-2,.._k-2 ekq--2ndk_2\ck-2; noting that, by the induction hyl)othesis, ~q ¢ = 

• next, Player I chooses b~_ 1 C_ B a .. d k-2 such that Ibm_ 1 I > [e~-i I; 

• then d/~-I is defined to be the least element of 

O a n O k-I  \(max(bk-1 U b~,_l) U c k-~) 

such that 

I d~-' n E~ n E~- '  n E~- '  n W~ "- c~-' l  >_ I ~ - ,  u ~_,  I; 

• Player I chooses ~"~_1 c ~ n ~-~ n ~-~ n W~ n (d ~-~ \ c  ~-~) such 

that 

I~"k-~l + I~i,-~l=l(bi,-i ub~_~)nB~l; 

k-1 k - 2  n (d k-2 \ c k-2) U c~._l; • Player I then defines % = eq 

k-~ k-~ n (c~-~ \ d k - 2 ) U e ' t k _ l  = e~_l U C'k-1; • and ~q = ep 
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• then (A k, E~, C t) are chosen by Player I if this is the play dictated by the 

strategy S~ if the sequence 

{((A i, E~, C'), (ai, e~, ci)); i • k} 

had been played in the game G(p, ea, ca); 

• t h e n ( B  ~, k k Eq, D ) are chosen by Player I if this is the play dictated by the 

strategy S~ if the sequence 

, i i i . k }  (((B'  E~, D ), (b,, eq, d )), i • 

had been played in the game G(q, e,~, d,~) - -  notice that I W~f'lE~lqEp k f)Eq k I 
= R0 because E~ and Eq k must be chosen from ca; 

k--I \ ck--1 I • Player I chooses a~ C_ a k fq Aa \ c k-I such tlmt [a~ [ >_ [Cq 

It follows from Lemma 2.1 that there is a play of tim ganm G(p, q) where Player I 

follows the strategy S~ but Player II wins. In other words, there is a play 

{((A k, Bk), (ak, bk)); k • w} of the game G(p, q) - -  as well as auxiliary sets 

i i i i i i i i t t . .  {(C ,D ,Ep, Eq, c ,d ,ep, eq,ai, bi),z • k} 

- -  such that U{ak; k • to} • p mad U{bk; k • to} • q. Furthermore, 

{((A i, i i E;,  C ), i • to} 

is a legal play of the game G(p, ca, c,~) in which Player I follows the strategy S~ 

and 
{((Bi ,E;,Di) , (bi ,  ieq,di)),i" • to} 

is a legal play of the game G(q, e,~, d,~) in which Player I follows the strategy S~. 

It can be concluded that, since {(A k, B k, ak, bk); k • to} is a winning play for 

Player II in the game G(p, q), that if the following definitions are made: 

• A~ = t.J{(ak U a~) N Aa; k • to}, 

• = u{(bk v bl) n k • to}, 

• C a  = {ck;  k • to},  

• D a  = { d k ; k  • to},  
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• E~ = U{e~; k • ~} =* U { ~ ;  k • ~}, 

then {((A i, i i i i . % , c  )), • a E~,,C ),(ai, i w} is winning play of the game 

di)); i • w} is a winning play of the a(p, ca+l, ca+l) and {((B i, E~, Di), (bi, %, 

game G(q, ea+l,da+l) for Player II. It follows that the strategy S~ is not a 

winning strategy for Player I in G(p, e, c) or G(p, e, d). It has also been de- 

cided whether or not W~ will belong to the filter generated by {E~; fl E ¢}. 

Moreover, Player I's strategy was designed to ensure that ~(A~, E~) _D Ca and 

~(B~, E~) D Da because 

I E~ n (c~ -. c~-') I = I ~  n (~' ", ci - ' )  I 

= I (~  u a5) n A~ n (c ~ -. c~-~) I = I~-~ n (d -. c i - ' )  I 

and 

IE~ n (d i \  di-1)l = leiq n (d i \  d i - l )  I 

= I(b~ u bS) n B ,  n (d i -, di-~) I = I B~ n (d ~ -, d'-~) I .  

Notice that the strategies are enumerated cofinally often so each strategy will 

eventually be eliminated at some successor stage. 

It remains to consider what happens if a is a limit ordinal. In this case there 

is no need to deal with any strategy or to decide the inclusion of a set into 

e~. Simply apply Martin's axiom to the following partial order P defined by 

(e, c, d, F) E P if and only if: 

• r • [a] <~°, 

• { e , c , d }  c_ [~1<~o, 

• (V j •c ) ( IA~,n j l=ien j l ) ,  

• ( ¥ j • d ) ( I B , , n j l = l e n j l ) .  

The ordering on P is defined by (e, c, d, F) < (e', c', d', F') if mad only if: 

s eCe',dC__d',cC_c'andFC_F', 

• e' "- e y n{E~; ~ • r}.  

It is a standard exercise to see that a generic set G on this partial order produces 

C" = U{c; (e, c, d, r )  • a} ,  D" = U{d; (e, c, d, r )  • G} and E,, = U{e; (e, c, d, F) 

• G}, such that 
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• Ea C_* Ee for each ~ E a,  

• Z(A~, E~) M C~ M C~ are E(B~, E~) N D~ N D~ are infinite for each ~ E w. 

The first condition is a direct consequence of the definition of the partial order 

P and the fact that any ( E a can be added to the F of any condition in F. To 

obtain the second clause suppose that ~ E a, k E w and (e, c, d, F) E P. It must 

be shown that it is possible to extend (c, c, d, F) E P to (d,  c', d, F) E P such that 

d n C~ ~ k (or (e', c, d', F) E P such that d ~ (1 D~ ~ k) - -  the definition of F will 

do the rest. To accomplish this choose j E w such that 

• j > max{k,  max(c),max(c)}, 

• IA~ n j [ ~  le~max(c) l ,  

• I(A. \ max(c)) n j I < I ( n~ rE . ,  \ max(c)) n j I, 

• j E C e ( o r j E D ~ ) .  

Let c' = c U {j} (or let d' = d U {j}) and extend e to e' &s required. The only 

question which needs to be answered is why it is possible to choose j E C~ such 

that ] (Aa \ max(c)) N j I -< [ (n.yerE.y \ max(c)) N j ]. The reason is that if 

= max( r )  then ~(A~,, n~erE-f) -=* Cs, by the induction hypothesis. Moreover, 

C¢ N Cg is infinite and A~, D* A~. 

It is now an easy matter to refine C~ and D~ to obtain a tower. I 

3. A slight modif ication of  Veli6kovi~'s par t i a l  o rde r  

It will be shown that  it is consistent with MA~ that if p and q are Pc points and 

p ~ q then p and q have the same topological type. The main step in doing this 

will depend on the following partial order which is a modification of a partial 

order used by Veli6kovi~ [5]. 

De/~nition 3.1: For any two ultrafilters p and q and a filter i" define the partial 

order Q(p, q, r) to consist of all one-to-one functions f such that: 

1. dora(f) E p*, 

2. ran(f)  E q*, 

3. ~ ( f )  E r, 
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ordered under C*. 

Much of this paper will be devoted to establish closure properties for Q(p, q, r) 

under certain conditions. The following lemma will prove to be useful in this 

context. 

LEMMA 3.1: Suppose that p and q are Px-points and r is a Px-tflter. Suppose 

also that r I • )~. I f  {re; ~ • r/} is an increasing sequence from Q(p, q, r) and if 

there is f '  such that f '  D_* fe for each ( • 71 then there is f E Q(p, q, r) such that 

f 3_* f~/'or each ~ • ~1. 

Proof." Choose C • r, A • p* and B • q* such that A _D* dom(fe), B 3_* ran(f•) 

and C C_* E(f~) for each ~ • 7/. It follows that for each ~ • 0 there is some 

A~ C_ dom(h ) n A such that 

• Idom(f~) \A~l<  R0, 

• c _ s , ,  

• c c_ IA ). 

Let f "  = O{fe IA~;~ • r/} noting that f "  ___ f ' .  Now let f = f"  r(f'-~B). It is 

easy to see that E(f)  3_ E(f")  3_ N~eAE(f~ I A~) 3_ C • r. | 

LEMMA 3.2: If p and q are Px-points and r is a Px-t~lter and A >_ wl then 

Q(p, q, r) is countably dosed. 

Proof: Given a sequence {fn; n • w} c_ Q(p, q, r) such that f ,  C_* f ,+ l  for each 

n • w choose inductively kn such that f~ = U{f,  I(w \ k,); n • w} is a function 

and apply Lemma 3.1. | 

LEMMA 3.3: If p and q are Px-points and 7" is a Px-liIter and p Mr q then 

1 IkQ(p,q,r) "q has the same topo]ogical type as p". 

Proof: By Lemma 3.2 no reals are added by forcing with Q(p, q, 7") and so p and 

q are still ultrafilters in the generic extension. It is sufficient to show that there 

is an automorphism of the Boolean algebra 79(w)/[w] <~° which takes the filter p 

to the filter q. Let IX] represent the equivalence class of X in 7:'(w)/[w] <~0. If G 

is Q(p, q, r)-generic define an automorphism ~G : 7~(w)/[w] <~° ~ 79(w)/[w] <~° 

by 

[{g(i);i e X}] if (3g • G)(X C_ dora(g)), 
Oa([X]) = [w'.{g(i);i  • w ' , X } ]  if(3g • G ) ( w \ X  C_ dom(g)). 
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If it can be shown that dom(q~6) = ~(w)/[w] <~° = ran(q~G) then it is routine 

to check that @a induces the desired autohomeomorphism of ~1~1 \ N. It suffices 

to check that if X _C w is in the ground model and f • Q(p, q, r) then there is 

f '  _~ f such that f '  I~-~p,q,~) "IX] • dom(¢a)  ;3 ran(~a)" .  To see that this is so 

assume that X • p* (otherwise deal with w \ X). Let X '  = X U dom(f)  • p*. 

The definition of t~r ensures that there is Y • q* such that ~(X ' ,  Y) • r. It is 

an easy matter  to extend f to f '  so that X _ dom(f ' )  and rml(f ' )  C r an ( f )UY.  

Obviously f '  I~" "[X] • dom(@a)". It is equally easy to put IX] into the range of 
~a .  | 

4. The iterated partial order 

In this section it will be shown how to construct a model of set theory in which 

any two Pc-points are topologically equivalent. To begin, let V be a model of 

PFA and, in this model, let {(Pa, q~, ra); a • ¢} be an enumeration of all names of 

triples of Pc-points which come from R2-chain condition partial orders of size R2. 

In this model construct an iteration {P~; a • w3} with supports of size R1 such 

that, for each a • w3, if 1 Ik~ "pc, ~r~ qa" then P~+I = P~ * Q(p~,q~,rc,) - -  

otherwise Q(pa, q,,, r~,) is trivial. It follows from Lemma 3.2 that P,~3 is countably 

dosed. Moreover, since all triples have been enumerated, it follows that 

1 I~r~s "(Vp, q,r)(  i fp  Mr q then (3a)(p = p~,q = q~ and r = ra))".  

If it can be shown that P~3 is R2-distributive then it will immediately follow 

that MA,,, also holds in this model since MA~ 1 refers only to structures (that is 

partial orders and families of dense sets) of size R1 and no new such structures 

have been added. It will then follow from Lemmas 3.3 and 2.2 that the resulting 

model is one in which all Pc-points are topologically equivalent. 

Det]nition 4.1: Let {ga;a • ~} be an increasing sequence in Q(p,q,r) .  Define 

the partial order 

• = {g; • = "  

The ordering on R({9~; a e ~}) is C_ as opposed to C_* in Q(p, q, r). | 

Notice that the definition of R({g~,; a E ~}) does not depend on Q(p, q, r) but 

only on {ga; a E ~}; however the partial order R({g~; a E ~}) will only be used 
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in the context that {9*,; a E ~} C_ Q(p, q, r) for s o m e  p, q rind r. The following 

lemma illustrates how these partial orders will be used to construct conditions in 

the partial order Q(p, q, r). 

LEMMA 4.1: Suppose that: 

1. p and q are P~-points in 3N \ N, 

2. r is a tilter such that p Mr q, 

3. {9~; ~ • ~} is an increasing sequence from Q(p, q, r), 

4. R({g¢;~ • t/}) • ~t and ~ is a countable elementary submodd of H(w2). 

Then there is g • Q(p,q,r) which is ~-generic for R({9~;~ • ,1}). Moreover, for 

any extension {g~; ~ • g} of{g¢; ~ • 7/} such that g~ = 9, every D • ~t is predense 

in R({g~; ~ • g}) provided that it is dense in R({#¢; ~ • 71}). 

Proof'. Let {D,,;n • w} enumerate the dense subsets of R({9¢; ~ • T/}) in 

~t. Players I and II will now play the game G(p, q, r) with Player I using the 

strategy about to be described. At stage n of the gmne suppose that Player II 

has chosen {(ai, hi, ci); i • n} while Player I has chosen {(Ai, Bi, Ci);i • n} as 

well as conditions {h~; i • n} from R({g¢; ~ • 7/}). Then Player I's strategy is to 

choose A,,, B,, and C,, according to the following plan: 

1. choose an arbitrary enumeration {(9~,, si); i E M,,} of all pairs (9, s) such 

that g : cn-i --' c,,-1 is a bijection and s • n; 

2. then choose a sequence {fi,,;i • M,,} c_ Q(p,q,r) such that for each i the 

following conditions hold: 

(a) J~ • n . ,  and g~ C S~, 

(b) fL r ( , , , \ ~ . - , )  c_ f£+,, 

(c) U{hi;i • n} r(w". c.-1) C f0; 

3. then let 6', = (N{E(f,~);i • M,,} \ c , ,_,)n (n{Ci;i • n}); 

4. define h,, = (U{f~, [(w \ c ._ , ) ; i  • M,,}) U (U{hi;i • n}); 

,5. let A. = w \ dom(h,,) and B,, = w \ ran(h,,). 

It is easy to check that the density of D.~ ensures that it is always possible 

for Player I to follow this strategy. The main thing to notice is that, because 

c.-1 E N{Ci;i • n} it follows that hi(j) E c . - t  mad hT, l( j)  • c,,-1 for each 
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j E c,,-1 and i E n - -  hence there is no conflict, in defining fo to be a one-to-one 

function, with the restriction that gO C_ fo and U{hi;i E n} I(w \ c.) C_ fo. In 

other words, g~, U (U{hi;i E n}) I(w \ cn -1 )  is a one-to-one function for each 

i E M,,. 
By the hypothesis on p, q and r this is not a winning strategy and so there must 

be some play of the game {(Ak,Bk, Ck),(ak,bk,ck); k E w} in which Player I 

has played according to this strategy but, nevertheless, Player II has won. In 

particular, U{aj;j  E w} = A E p, U{bj;j E w} = B E q and {cj;j E w} = C E r. 
Notice that aj n dom(hi) = 0 for all i and j because if i < j then aj C_ Aj = 

w "- dom(hj) C_ w "- dom(hi) whileif i > j then dom(hi)ncj = 0 and cj > max(aj) 

because of the rules of the game G(p, q, r); hence dom(h~) n A = 0. Similarly, 

ran(h~) n B = 0 for each i E w. It follows that if g is defined to be U{hk; k E w} 

then g E Q(p, q, r) provided that it can be shown that ~(g) __D C. To see this 

let, c,, E C. Observe that cn E ~(Uien+lhi) by definition. Also note that, since 

Player I's strategy involved enumerating only bijections in i {(9,,+~,si);i E M,,+a}, 

it follows that cn E ~(f./+~) for each i E M,,+~ and hence 

dom(h,,+l \ Uie,+ l hi ) U ran(h,,+1 "- Uie,+ l hi ) C_ w \ c,. 

Furthermore, if m > n + 1 then dom(h,,,) U ran(h,,,) C_ w ". c,. From these facts 

it follows that ~(g) _~ C. 

Moreover, g is 9.l-generic for R({g~; ~ E 7/}) in the strong sense of the lemma. 

To see this suppose that D E ~ is a dense set in R({g¢; ~ E 71}) and R({g 6 ~ E #}) 

is a sequence extending R({g~;~ E ~/}) such that 9 = g,~. Let K be such that 

D = DK. Suppose also that g _ h, h E R({g~;~ E/~}) and that h is incompatible 

with every element of D. Since h E R({g 6 ~ E #}) it follows that E(h) E r and 

hence there is some k E C N E(h) such that ]C O k I> K. Hence, for some j ,  

k = cj was chosen by Player II at stage j of the game and j > K. 

Now consider the strategy used by Player I to choose Aj+I, Bj+I and Cj+I. In 

the enumeration {(gj+t, si); i E Mj+, } of the subset of CJcj × (j + 1), whose f rs t  

coordinates are bijections, there is some m E Mj+1 such that gj'~-I ~- h lcj and 

s m = K. It follows that f~-I E D by Player I's strategy. Also f ~ ,  I(w " cj) C_ 
hj+~ C_ g C_ h and f~+l Icj ~_ h Icj. Moreover, because cj E E(h) it follows that 

h I (w "- cj) U g is one-to-one for any one-to-one g : cj ~ cj. It follows that h is 

compatible with some member of D - -  namely f~-l .  I 
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LEMMA 4.2: Pw3 is R2-distributive. 

Proof'. Let {E~,; tt • wl } be dense sets in Pw3 and and let f • P.,3" Let D be 

a countably closed forcing notion which adds a 0-sequence {A.; c~ • wl} - -  to 

be precise, {A,~; a • w~ } is a collection such that A~, • [a] ~¢0 for each a • wl 

and, moreover, there is a surjection 0 : wl ~ wl such that for all X C_ H.~ 1 and 

fl • wl the set {/~ • w~;X N # • A~, and 0(#)  = fl} is stationary. In the model 

obtained by forcing with D let 9Jl -< H~ 4 be such that 192l I=  Rt, [9)l] ~¢* C ff)l 

and both f and P~a belong to ffYt as do the indexed families {A~;a • wl} and 

{E,,;a • wl}. Notice that wl is both an element as well as a subset of 9Y/. Hence 

each individual A~ and E¢, belongs to 97l. 

By extending the sets Aa for a • Wl it may, without loss of generality, be 

assumed that 

• each A~ is a model of a large fragmem of set theory, 

• A a C A ~ i f a • / ~ ,  

• u{A~,; c, • ~ } ~ ~ n H,~,. 

Let 0 : wl ~ [~J~ N w3] <~¢o be a surjection such that O(a) = 0(/3) implies that 

0(~) = 0(~). 

To finish the proof assume that a sequence {f~,; a • wl } has been constructed 

such that the following properties are satisfied: 

1. f o = f ,  

2. f~+l • E~,, 

3. f,~ • Pw313 ff~, 

- 4. i f a e f l  then fa  >_ f~, 

5. for all/~ • U~ew, support(fa) there is a(¢, ) such that for each a > a(/~) 

"'~" - -  if a < a(#) then define there is g .  such that f~ [# I~-r. "f,,(/t) = g,  
~t g~, = O, 

6. if 7 • 0(a) then 

f,~ r7 ll-I,, "f,~(7) is A~,[{f,~(~); ~ • 0(a) N 7}l-generic for R({g~; ¢ E a})". 
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Such a sequence is easily constructed using Lemma 4.1. 

Given such a sequence {f,~;a E wl} it follows fi'om condition 6 and the 

hypothesis on O and 0 that for each F E [ff31 N w3] <~* 

-~EF 

has the countable chain condition. (Note that the iteration caz2 be written as 

a product because the partial orders R({g~; a • wl }) are in the ground model 

since the sequence {g~; a • wl } has been decided and no new reals are added by 

forcing with P~,. Also, the ultrafilters p.y, q.y and r-y play no role in the definition 

of the partial order R({g.~; a • w~})). The standard argtunent for this is to 

suppose that 

c c I I  • 
~tEF 

is a maximal antichain for some F = {7~,72,. . . ,7k} • [gX N w3] <~*. The 

hypothesis on {A~; ~ • w~ } ensures that there is some ~ • wt such that 

• ~ > a ( 7  ) f o r T • r ,  

• = r • Ae, 

• C n l-I~er R({g-7; a • ~}) e A~ is a maximal antichain in 

-tEP 

Since f~(7) is A~[{f~(6); 6 E 7N0(~)}]-generic for the partial order R({g~; ff E ~}) 

it follows that (re(71), f~(72) , . . . ,  f~(Tk)) is A~-generic for the partial order 

1'11~ 

i = 1  

This follows from the general fact [3] that if p is ~-generic for P and 

p I[-p "q is ~[G]-generic for Q" 

then p * q is £{-generic for P * Q. 
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Hence C n H~er R({g~; ~ • ~}) is a maximal antichain in 

I I  R({9.~,; ~ • ~,}) 
i=1  

because of the genericity of (f~(7,), f~(72) , . . . ,  f~(Tk)) over the model A~ - -  this 

relies on the fact that 0(~) = r - -  and the fact C M I]~er R({g~; a e ~}) • A e. 

Hence C is countable and it follows that 

or. y[  R({g.,~ e ~,}) 
~'E~nw 3 

has the countable chain condition since each finite subproduct does. 

Let G be 

~E~nw~ 

generic and define f~,(7)  = U{g(7);g • G}. It is clear that f~ , (7)  _D* f,~(7) for 

each a • wl and 3' • ~ M w 3 a~ld that f ~  (7) is a one-to-one function. What is 

not yet true is that dora(L,  (7)) • P'r mad r a n ( L  , (7)) • P-r However to obtain 

the structure ({f~;~ • w l }, f ' )  requires meeting only R~ dense sets in 

D ,  I I  a( ig~; .  • ~,}) 
7Ewl 

and since this is a proper partial order it follows from PFA that the structure 

can be constructed. It then follows from Lemma 3.1 and the fact that 

0 Ikp, "p~ and q, are P :po in ts  and r ,  is a P,-filter" 

that there is a f E P~a such that dora(f)  = ff~ N w 3 and 

f It/If-p, "f(7/) C f'(r/) and f(r/) __D* f~,(r/)" 

for each 7} E ffJt N w 3 and ~u E wl. Note that, in general, f (y )  is a F~-name for a 

condition and not of the form ~ because the filters p~, q~ and r 7 may not have 

been determined. | 

The results of this section prove the following theorenl. 

THEOREM 4.1: //" Z F  is consistent then so is Z F C  and MA~ t and every two 

Pc-points are topologically equivalent. 
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Proof: Let V be a model of PFA and let G be P, , :generic over V. In the 

resulting model M A ~  still holds and also if p and q are any two P :po in t s  such 

that p tm q then p and q have the same topological type. The result then follows 

because Lemma 2.2 implies that if p and q are any two P :po in t s  then p ~ q. 
| 

5. O p e n  questions 

It has been shown that it is consistent with MA,,~ that there are topological 

equivalence classes both of size 2 ~° and 2 2"o but are these the only possibilities? 

QUESTION 5.1: IS it consistent with MA that there is a topological equivalence 

class of size i¢ and 2 ~° < t¢ < 2 2"o ? 

QUESTION 5.2: IS it consistent with Z F C  that there is a topological equivalence 

ctass at"size ~ and 2 ~° < t¢ < 2 2"° ? 

QUESTION 5.3: Is it consistent with MA that there are two topological equiva- 

lence c/asses of different cardinalities ? 

The question of the number of different topological types in/~1~1 "-. N still does not 

seem to be completely understood. 

QUESTION 5.4: Is it consistent with MA that there are less than 2 2"0 topological 

equivalence classes in f in \ N ? 

Theorem 4.1 refers only to P :po in t s  but in order to answer Question 5.4 it will 

be necessary to obtain similar results for other points as well. The following 

question indicates only one of several possibilities. 

QUESTION 5.5: Is it consistent with MA,, 1 that any two P,~-points are topolog- 

ically equivalent ? 

QUESTION 5.6: /t- the answer to Question 5.5 is negative then what is the best 

that can be done? 

It is worth noting that the homeomorphisms constructed in Theorem 4.1 are all 

of a special type - -  in the sense that they can be considered to be limits of trivial 

homeomorphisms. Is it consistent with MA that there is a homeomorphism which 

is not of this type? Perhaps MA implies a structure theorem for homeomorphisms 

of/~N\ N. 
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